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Exercise 14.1

This example will be skipped as said by Dr. Emerson.

Exercise 14.2

Confirm that when Nielsen and Chuang define σ− = |0⟩⟨1| in the context of
amplitude damping (viz, page 388 in the first edition), this is inconsistent with
the usual definition σ± = σx±iσy

2

Solution: Based on the definition of Nielsen & Chuang

σ− =

(
0 1
0 0

)
= |0⟩⟨1|

However, the usual definition gives

σ− =
σx − iσy

2
=

1

2

[(
0 1
1 0

)
−
(

0 1
−1 0

)]
= |1⟩⟨0|

We can see that the two definitions are inconsistent
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Exercise 14.3

Calculate the Lindblad operators associated with phase-damping and show that
resulting the master equation for phase damping is equivalent to (14.37).

Solution: The Kraus operators can be expanded as:

A0 = 1− λ

2
σ−σ+ +O(∆t2) = A†

0, A1 =
√
λσ−σ+ = A†

1

Therefore

lim
∆t→0

ρ(t+∆t)− ρ

∆t
= lim

∆t→0

A0ρA
†
0 + A1ρA

†
1 − ρ

∆t

= lim
∆t→0

ρ− λ
2
(ρσ−σ+ + σ−σ+ρ) + λσ−σ+ρσ−σ+ − ρ

∆t
= −Γ1

2
{ρ, σ−σ+}+Γ1σ−σ+ρσ−σ+

Hence
dρ

dt
= −Γ1

2

(
0 ρ01
ρ10 2ρ11

)
+ Γ1

(
0 0
0 ρ11

)
= −Γ1

2

(
0 ρ01
ρ1 0

)
which is equivalent to Equation 14.37

Exercise 14.4

Check that these three operators form a valid set of Kraus operators.

Solution: The operators must satisfy
∑

k A
†
kAk = 1. Note that

A†
0A0 + A†

1A1 + A†
2A2 =

(
1 0
0 1− λ− γ

)
+

(
0 0
0 λ

)
+

(
0 0
0 γ

)
= 1

Therefore, the three operators form a valid set of Kraus operators.

Exercise 14.5

Explain why we can compress the four Kraus operators associated with ampli-
tude and phase damping, understood as independent processes, into only three
Kraus operators in the context of the above argument.

Solution: The Kraus Representation of the composition of the Phase and Am-
plitude Damping channels can be achieved by multiplying the Kraus operators.
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A′
0 =

(
1 0

0
√
1− λ

)(
1 0
0

√
1− γ

)
=

(
1 0

0
√

1− λ(1− γ)− γ

)
=

(
1 0
0

√
1− λ′ − γ

)

A′
1 =

(
1 0
0

√
1− γ

)(
0 0

0
√
λ

)
=

(
0 0

0
√
λ(1− γ)

)
=

(
0 0

0
√
λ′

)

A′
2 =

(
1 0

0
√
1− λ

)(
0

√
γ

0 0

)
=

(
0

√
γ

0 0

)

A′
3 =

(
0

√
γ

0 0

)(
0 0

0
√
λ

)
=

(
0 0
0 0

)
We can see that the fourth Kraus operator is a zero matrix. Therefore, we only
require three Kraus operators.

Exercise 14.6

Calculate the Lindblad operators associated with simultaneous amplitude and
phase-damping and show that the resulting master equation is equivalent to
that obtained from (14.39). In particular confirm whether the off-diagonal term
should have the form ρ01e

−1(Γ1+Γ2)t/2 or ρ−(Γ1+2Γ2)t/2
01 as in (14.37).

Solution:

A0 = 1−γ + λ

2
σ−σ++O(∆t

2) = A†
0, A1 =

√
λσ−σ+ = A†

1, A2 =
√
γσ+, A

†
2 =

√
γσ−

lim
∆t→0

ρ(t+∆t)− ρ

∆t
= −γ + λ

2
{ρ, σ−σ+}+ λσ−σ+ρσ−σ+ + γσ+ρσ−

Hence

dρ

dt
= −Γ1 + Γ2

2

(
0 ρ01
ρ01 2ρ11

)
+Γ1

(
0 0
0 ρ11

)
+Γ

(
ρ11 0
0 0

)
=

(
Γ1ρ11 −Γ1+Γ2

2
ρ01

−Γ1+Γ2

2
ρ01 −Γ1ρ11

)
Therefore, the off-diagonal term should have the form ρ01e

−1(Γ1+Γ2)t/2.
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Exercise 14.7

Verify the correctness of eqns. (14.43) and (14.44) – there are almost certainly
some sign errors in the above – then recast eqns. (14.43) in terms of the timede-
pendent expectation values for the spin components (⟨σx⟩, ⟨σy⟩, ⟨σz⟩)
Solution: The Hamiltonian is given by:

H = H0 +H1(t)

=
ℏω0

2
σz +

ℏω1

2
(σz cosωt+ σy sinωt)

=
ℏ
2

(
ω0 0
0 −ω0

)
+

ℏω1

2

(
0 cosωt− i sinωt

cosωt+ i sinωt 0

)
=

ℏ
2

(
ω0 ω1e

−iωt

ω1e
iωt −ω0

)
Assuming ρ is given by:

ρ =

(
ρ00 ρ01
ρ10 ρ11

)
Using the Von Neumann equation, we gave

iℏ
∂ρ

∂t
= [H, ρ] = Hρ− ρH

=
ℏ
2

(
ω0 ω1e

−iωt

ω1e
iωt −ω0

)(
ρ00 ρ01
ρ10 ρ11

)
− ℏ

2

(
ρ00 ρ01
ρ10 ρ11

)(
ω0 ω1e

−iωt

ω1e
iωt −ω0

)
=

ℏ
2

(
ω0ρ00 + ω1e

−iωtρ10 ω0ρ01 + ω1e
−iωtρ11

ω1e
iωtρ00 − ω0ρ10 ω1e

iωtρ01 − ω0ρ11

)
− ℏ

2

(
ω0ρ00 + ω1e

−iωtρ01 ρ00ω1e
−iωt − ω0ρ01

ω0ρ10 + ω1e
iωtρ11 ω1e

iωtρ10 − ω0ρ11

)
=

ℏ
2

(
ω1(e

−iωtρ10 − ρ01e
−iωt) 2ω0ρ01 + ω1e

−iωt(ρ00 − ρ11)
ω1e

iωt(ρ11 − ρ00)− 2ω0ρ10 ω1(e
iωtρ01 − ρ10e

iωt)

)
Define ∆ := ρ11(t)− ρ00(t), and r = ρ01. Therefore
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∂∆

∂t
=
∂ρ11
∂t

− ∂ρ00
∂t

= − i

2
ω1

(
e−iωtρ10 − eiωtρ01

)
−
(
−iω1e

iωtρ01 − e−iωtρ10
)

= −iω1

2

(
e−iωtρ10 − eiωtρ01

)
−
(
ω1e

iωtρ01 − ω1e
−iωtρ10

)
=

−i
2
ω1

(
2ω1e

−iωtρ10 − 2ω1e
iωtρ01

)
= iω1

(
reiωt − r∗e−iωt

)
which has a different sign compared to Equation 14.43. Similarly

∂r

∂t
=
∂ρ01
∂t

(t) =
−i
2

(
2ω0ρ01 + ω1e

−iωt (ρ11 − ρ00)
)

= − i

2

(
2ω0r + ω1e

−iωt∆
)

= −iω0r −
iω1

2
∆e−iωt

Adding the relaxation terms associated with the amplitude and phase damping
model above, we get the Bloch equations

∂∆

∂t
= −iω1

(
r∗e−iωt − reiωt

)
− Γ1 (∆−∆eq)

∂r

∂t
= −iω0r −

iω1

2
∆e−iωt − Γ2r

Defining r = r′e−iωt ⇒ r′ = reiωt gives

∂∆

∂t
= −iω1 (r

′∗ − r′)− Γ1 (∆−∆eq)

which also has an error sign compared to Equation 14.44.

∂

∂t

(
r′e−iωt

)
= −iω0r

′e−iωt − iω1

2
∆e−iωt − Γ2r

′e−iωt

= e−iωt∂r
′

∂t
+ r′e−iωt · (−iω) =

(
−iω0r

′ − iω1

2
∆− Γ2r

′
)
e−iωt

=
∂r′

∂t
= −iω0r

′ − iω1

2
∆− Γ2r

′ + r′iω

= i (ω − ω0) r
′ − iω1

2
∆− Γ2r

′
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We know that ⟨A⟩ = Tr(ρA), therefore

⇒ ⟨σx⟩ = Tr

[(
ρ00 ρ01
ρ10 ρ11

)(
0 1
1 0

)]
= Tr

(
ρ01 ρ00
ρ11 ρ10

)
= ρ01 + ρ10 = r + r∗

⇒ ⟨σy⟩ = Tr

[(
ρ00 ρ01
ρ10 ρ11

)(
0 −i
i 0

)]
= Tr

(
iρ01 −iρ00
iρ11 −iρ10

)
= i (ρ01 − ρ10)

= i (r − r∗)

⇒ ⟨σz⟩ = Tr

[(
ρ00 ρ01
ρ10 ρ11

)(
1 0
0 −1

)]
= Tr

(
ρ00 −ρ01
ρ10 −ρ11

)
= ρ00 − ρ11 = −∆

⇒ i ⟨σx⟩+ ⟨σy⟩ = i (r + r∗) + i (r − r∗) = 2ir

⇒ r =
⟨σx⟩
2

− i ⟨σy⟩
2

Note that
i ⟨σx⟩ − ⟨σy⟩ = 2ir∗

Therefore,

r∗ =
⟨σx⟩
2

+
i ⟨σy⟩
2

Putting these in Equation 14.43, we get

− ∂

∂t
⟨σz⟩ = −iω1

((
⟨σx⟩
2

+
i ⟨σy
2

)
e−iωt +

(
⟨σx⟩
2

− i
⟨σy⟩
2

)
eiωt
)
−Γ1

(
−⟨σz⟩+ ⟨σz⟩eq)

∂

∂t
⟨σz⟩ =

iω1

2

(
(⟨σx⟩+ i ⟨σy⟩) e−iωt + (⟨σx⟩ − i ⟨σy⟩) eiωt

)
− Γ1

(
⟨σz⟩ − ⟨σz⟩eq )

Therefore,

1

2

∂

∂t
(⟨σx⟩ − i ⟨σy⟩) = (−iω0 − r2) (⟨σx⟩ − i ⟨σy⟩) +

iω1

2
⟨σz⟩ e−iωt
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Exercise 17.1

Prove eqn. 17.1 in the special case of two pure states.

Solution: Let ρ = |ψ⟩⟨ψ| and σ = |ϕ⟩ ⟨ϕ|. Let
∣∣ψ⊥〉 be orthogonal state such that

|ψ⟩ ,
∣∣ψ⊥〉 and |ϕ⟩ lie in the same plane in the Bloch Sphere. Since both states are

pure, we can write
|ϕ⟩ = cos(θ)|ψ⟩+ sin(θ)

∣∣ψ⊥〉
Representing |ψ⟩⟨ψ| − |ϕ⟩ ⟨ϕ| in the {|ψ⟩,

∣∣ψ⊥〉} basis, we have

|ψ⟩⟨ψ| − |ϕ⟩ ⟨ϕ| =
[

1− cos2(θ) − sin(θ) cos(θ)
− sin(θ) cos(θ) − sin2(θ)

]
=

[
sin2(θ) − sin(θ) cos(θ)

− sin(θ) cos(θ) − sin2(θ)

]
Since Tr(||ψ⟩⟨ψ|−|ϕ⟩ ⟨ϕ| |) =

∑
i |λi|, and eigenvalues are invariant to the change

of basis, the eigenvalues of |ψ⟩⟨ψ| − |ϕ⟩ ⟨ϕ| are

λ2 − sin4(θ) + sin2(θ) cos2(θ) = 0

λ2 − sin4(θ) + sin2(θ)(1− sin2(θ)) = 0

λ2 − sin2 = 0

(λ− sin(θ))(λ+ sin(θ)) = 0
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Therefore Tr(||ψ⟩⟨ψ| − |ϕ⟩ ⟨ϕ| |) = 2| sin(θ)|. Note that(
1

2
Tr(||ψ⟩⟨ψ| − |ϕ⟩ ⟨ϕ| |)

)2

= 1− cos2(θ)

Also, based on our choice of basis, we have that

| ⟨ϕ| |ψ⟩|2 = cos2(θ)

Therefore,

1

2
Tr(||ψ⟩⟨ψ| − |ϕ⟩ ⟨ϕ| |) = Dq(ψ, ϕ) =

√
1− | ⟨ϕ| |ψ⟩|2

Exercise 17.2

Give a formal proof that the optimal measurement for the trace-distance is al-
ways a PVM.

Solution: From N&Ch p.404. We are trying to prove that

D(ρ, σ) = max
P

Tr(P (ρ− σ))

where P is a PVM. ρ − σ can be expressed as ρ − σ = Q − S, where Q and
S are positive operators with orthogonal support. This is because by spectral
decomposition, ρ − σ = UDU †. Then, we can break down the diagonal matrix
into positive an negative entries, such that

UDU † = U(D+ +D−)U
† = UD+U

† − U(−D−)U
† = Q− S

. Note that |ρ− σ| = Q+ S, since

|ρ− σ| =
√

(Q− S)†(Q− S) =
√
Q2 − 2QS + S2 =

√
Q2 + S2 = Q+ S

by the orthogonal support ofQ and S, soD(ρ, σ) = (Tr(Q)+Tr(S))/2. However,
Tr(Q−S) = Tr(ρ− σ) = 0, so Tr(Q) = Tr(S), and therefore D(ρ, σ) = Tr(Q). Let
P be the projector onto the support of Q. Therefore,

Tr(P (ρ− σ)) = Tr(P (Q− S)) = Tr(Q) = D(ρ, σ)

Conversely, let P be any projector. Thus
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Tr(P (ρ− σ)) = Tr(P (Q− S)) ≤ Tr(PQ) ≤ Tr(Q) = D(ρ, σ)

which means that D(ρ, σ) = maxP Tr(P (ρ− σ))

Exercise 17.3

Derive Eq. 17.6 from Eq. 17.5.

Solution: Let ρ = |ψ⟩⟨ψ|. Since |ψ⟩ is a pure state, then
√
ρ = ρ. By the cyclic

property of trace, we have

F (|ψ⟩, σ) =
(
Tr
(√

|ψ⟩⟨ψ|σ|ψ⟩⟨ψ|
))2

=
(
Tr
(√

⟨ψ|σ|ψ⟩|ψ⟩⟨ψ|
))2

=
(√

⟨ψ|σ|ψ⟩Tr (|ψ⟩⟨ψ|)
)2

=
(√

⟨ψ|σ|ψ⟩
)2

= ⟨ψ|σ|ψ⟩
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