Chapter 14

Exercise 14.1

This example will be skipped as said by Dr. Emerson.

Exercise 14.2

Confirm that when Nielsen and Chuang define o = |0)(1| in the context of
amplitude damping (viz, page 388 in the first edition), this is inconsistent with

the usual definition oy = &;ay

Solution: Based on the definition of Nielsen & Chuang

= (g o )=tox

However, the usual definition gives

om0 ) =( )] -

We can see that the two definitions are inconsistent
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Exercise 14.3

Calculate the Lindblad operators associated with phase-damping and show that
resulting the master equation for phase damping is equivalent to (14.37).

Solution: The Kraus operators can be expanded as:
A
Ay =1~ Jo o, +O(AF) = Al A =V)o o, = Al

Therefore
Coplt+ A —p  AgpAl+ AipAl —p
hm _— = hm

At—0 At At—0 At

o p—5(po_oi+o o.p)+ro_oypo_oy —p
= lim
At—0 At

Hence
@ _ _E 0 por 4T 0 0 _ _E 0 por
dt 2 \pio 2p11 "\0 pu 2 \pp O

which is equivalent to Equation 14.37

r
= _?1{’0’ O‘_O‘+}+F10'_0'+p0'_0'+

Exercise 14.4

Check that these three operators form a valid set of Kraus operators.

Solution: The operators must satisfy 3", AL A; = 1. Note that

10 00 00
A8A0+AIA1+A;A2:<0 1—/\—7)+(0 A)JF(O 7):1

Therefore, the three operators form a valid set of Kraus operators.

Exercise 14.5

Explain why we can compress the four Kraus operators associated with ampli-
tude and phase damping, understood as independent processes, into only three
Kraus operators in the context of the above argument.

Solution: The Kraus Representation of the composition of the Phase and Am-
plitude Damping channels can be achieved by multiplying the Kraus operators.
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8- ) (6 o) (0 i) - 6 )
=0 =) 6 ) =6 =) -0 )
o= (b i) (0960

(66 563

We can see that the fourth Kraus operator is a zero matrix. Therefore, we only
require three Kraus operators.

Exercise 14.6

Calculate the Lindblad operators associated with simultaneous amplitude and
phase-damping and show that the resulting master equation is equivalent to
that obtained from (14.39). In particular confirm whether the off-diagonal term

should have the form ppye C1T2t/2 op p=(CIF22002 4 i (14.37).

Solution:

A
A =1-252 s voar) = Al A = Voo or = AL, Ay = Ao, AL = oo
. pt+A)—p v +
Aliglo ( At) = {p,o_or}+AXo_o po_oy +~yo po_
Hence

do _ _TitTo (0 pu,p (0 0\, pfpn OY_( Tipn  —Dffpy
dt 2 po1 2pn 0 pn 0 0 1+F2p01 “Typn

1(F1+F2)t/2.

Therefore, the off-diagonal term should have the form pye”
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Exercise 14.7

Verify the correctness of eqns. (14.43) and (14.44) — there are almost certainly
some sign errors in the above — then recast eqns. (14.43) in terms of the timede-
pendent expectation values for the spin components ((c,), (7,), (0.))

Solution: The Hamiltonian is given by:
H = Hy+ Hy(t)
hu)o hw1

=5 0 + T(O'Z cos wt + oy, sin wt)

_hifw 0 +% 0 cos wt — i sin wt
2\ 0 —wp 2 \coswt + isinwt 0
B E Wo wle—iwt
- 2 wleiwt _wO
Assuming p is given by:
_ [ Poo  Po1
P (Plo Pn)

Using the Von Neumann equation, we gave

Zﬁap [H,p| = Hp— pH
_h ( ) (Poo Pm) _h (Poo p01) ( Wo w1€iwt)
2 wlem —Wwo P10 P11 2 \po pu) \wie™  —wp
_h (wopoo +wie @ pig wopor + w16wtp11>
2 \ wie™poo — wopro  wi€por — wopin
_h (Wopoo +we Mpm Poow;e*i“’t - wopm)
2 \ wWopio + wie®tprr wietprg — wopn
7} “pro — pore” ™) 2wopor + w1€7M(P00'— P11)>
2 wlem (P11 — poo) — 2wopio wi (€™ por — proe™?)

Define A := p11(t) — poo(t), and r = pg;. Therefore
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0A 0 0 ) . , . ,
— _ 521 B gzo _ —%uh (efzwtplo . elwtp()l) o (_iwlezwtp(]l _ e—zwtpw)

W1 —iwt iwt twt —iwt
= —Z? (6 P1o — € 001) - (wle Po1 — wi€ Plo)
—1 . .
—iwt wwt
= 7w1 (2wle P10 — 2wre p01)
— iwl (Tezwt . T*e—zwt)

which has a different sign compared to Equation 14.43. Similarly

ar 0 —1 ;
S T

= —% (2w07’ + wle’mA)
= —ijwor — M—lAe_M

2
Adding the relaxation terms associated with the amplitude and phase damping
model above, we get the Bloch equations

0A A ,

o = —iw; (T*e_Mt — Tezwt) — Ty (A — A*)
or , W1\ i

E = =T — 71A6 t_ Fz’f’

Defining r = r'e ™" = ' = re™! gives

0A

W = —iwl (T’,* — T/) — Fl (A — A8q>

which also has an error sign compared to Equation 14.44.

% (r/e*i“’t) = —jwor'e Wt — Z.WTIA(BM — Tyr'e !
= e_i“’t%—?: + e (—iw) = (—z’wor/ — WTIA - Fgr'> et
= %—7; = —iwr’ — %A — Tor’ + riw
=i(w—w)r — %A—Fgr'
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We know that (A) = Tr(pA), therefore

= (0,) = Tr Poo  Poi 0 1] _ [ Por Poo
P10 P11 10 /] P11 P10

=por +po=r+1r"

= (0,) =Tr {( Poo  Po1 ) ( 0 -1 ) — Ty < Lpo1 —tPoo )
P10 P11 i 0 i P11 —1P10

=1 (P01 - Plo)
=i(r—r")
= (0.) = Tr Poo  Poi 10 N O
‘ P10 P11 0 —1 P10 —pP11
= poo — p11 = —A

=i (0,) + (oy) =i (r+71")+i(r—r")=2ir

2 2
Note that
i(oy) — (oy) = 2ir"
Therefore,
. o) | i{oy)
r= 7 + 5

Putting these in Equation 14.43, we get

S (B Y (2 AN P

8 iwl - —twt . twt e
5 \0:) = ((oa) +iloy)) e + ((02) —i{oy)) e*') =T ((02) — (0:)*)
Therefore,
]_ a . . . ZCL)l 7iwt
55 (02 —40,)) = (=iwo = 12) (o) — i {oy)) + - (o) e
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Exercise 17.1

Prove eqn. 17.1 in the special case of two pure states.

Solution: Let p = [¢)(¢)| and o = |¢) (¢|. Let [¢)*) be orthogonal state such that
), |¥+) and |¢) lie in the same plane in the Bloch Sphere. Since both states are
pure, we can write

|p) = cos(0)|y) + sin(6) WL>
Representing [¢) (4| — |¢) (¢| in the {[¢),

¢+)} basis, we have
| 1—cos?(0) —sin(0) cos(9)
) (W] — o) (¢| = [ —sin(f) cos(d)  —sin*(0) ]
B sin?(0) — sin(6) cos(0)
- [ — sin(#) cos () — sin®(6)
Since Tr(||Y) (Y| —|9) (o] |) = D_,; | \il, and eigenvalues are invariant to the change
of basis, the eigenvalues of [¢)) (¢)| — |¢) (¢| are
A2 — sin®(0) + sin®(0) cos*(0) =
A% — sin?(0) 4 sin?(0) (1 — sin?(9)) =

A2 —sin? =
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Therefore Tr(||1) (¢)| — |¢) (¢]|) = 2| sin(#)|. Note that

(5Tl - 10) (01D) =1 co)

Also, based on our choice of basis, we have that

| (6]1¥)|* = cos*(0)

Therefore,

S TR0 W]~ [6) (6]1) = Da(wh,6) = VT~ [T 0IP

Exercise 17.2

Give a formal proof that the optimal measurement for the trace-distance is al-
ways a PVM.

Solution: From N&Ch p.404. We are trying to prove that
Di(p,o) = max Te(P(p — 0))

where P is a PVM. p — ¢ can be expressed as p — 0 = Q — S, where () and
S are positive operators with orthogonal support. This is because by spectral
decomposition, p — ¢ = UDUT. Then, we can break down the diagonal matrix
into positive an negative entries, such that

UDU'=U(D, +D)U'=UD, U —U(-D_)U'=Q -8

. Note that |p — o] = Q + S, since

lp— ol =(Q—-9Q =V@Q2-2Q5+S2=/Q*+S2=Q+S

by the orthogonal support of Q and S, so D(p, o) = (Tr(Q)+Tr(S))/2. However,
Tr(Q —S5) =Tr(p—0) =0,s0 Tr(Q) = Tr(S), and therefore D(p, o) = Tr(Q). Let
P be the projector onto the support of ). Therefore,

T(P(p - 0)) = TH(P(Q — S)) = TH(Q) = D(p, o)

Conversely, let P be any projector. Thus
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Tt(P(p - 0)) = TH(P(Q — 5)) < Te(PQ) < TH(Q) = Di(p,0)

which means that D(p, o) = maxp Tr(P(p — o))

Exercise 17.3

Derive Eq. 17.6 from Eq. 17.5.

Solution: Let p = [¢)(¢|. Since |¢) is a pure state, then \/p = p. By the cyclic
property of trace, we have

<
=
2
<
=
=
N—

2
S
<
=
€
=
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